1. :18964530232
  2. :021-54379817

资讯中心

NEWS

锂离子电池耐热型聚合物隔膜的研究进展

2022-12-01 来源:艾邦高分子公众号

随着当前新能源电动车和大型储能系统等大功率设备的迅猛发展,大容量高比能动力及储能锂离子电池在近些年来更是呈现出了井喷式的发展。


然而,近些年来新能源电动车自燃及爆炸事件频发,引起了人们对动力锂离子电池安全性的高度关注和质疑。其中,最核心的原因之一是现有锂电池隔膜的性能无法满足高比能电池的应用要求。动力锂电池需要更高的安全性能、更大的容量、长时间稳定输出的均一性能以及大倍率充放电性能。
image.png

电动车起火

隔膜在锂离子电池中主要起着2个作用,一是隔膜材料需要具备良好的绝缘性与一定的强度,在电池内能够避免正负极的直接接触,并且可以有效防止被毛刺、枝晶等刺穿而发生短路,以及保证在突发的高温条件下不发生大幅度尺寸变化,从而保证电池的安全。二是隔膜存在的多孔结构可以为锂离子提供良好的迁移通道,保障电池稳定高效地运行。
image.png

隔膜的迁移通道作用示意图

隔膜作为锂离子电池的“第三电极”,是保证电池体系安全和影响电池性能的关键材料,需要具有较高强度、耐热性、阻燃性、高孔隙率、均匀性及良好浸润性等特性。

目前,锂离子电池隔膜大多采用的是以聚丙烯(PP)和聚乙烯(PE)为基体的聚烯烃微孔膜,其较低的熔点(PP为165℃、PE为135℃)和软化温度使电池易发生因隔膜熔缩导致的热失控,尤其是在过充过放和大功率充放电的情况下会引起电池起火或爆炸。
image.png


聚烯烃隔膜

此外,PP和PE为非极性高分子,电解液浸润性较差,进而导致电池内阻较大,加之其孔隙率较低(约40%)而带来的低离子电导率,因而会严重限制电池的大倍率性能,难以满足电池大电流快速充放电的需要。尽管以传统聚烯烃隔膜为基础进行改性可以改善隔膜的耐热型浸润性,但无法解决隔膜当前面临的问题,也无法满足高性能隔膜的市场需求。

为了提高锂电池的安全性并满足市场需求,研制新一代的高性能聚合物隔膜是当前亟待解决的难题。随着科技的不断进步,耐热型聚合物隔膜的研究也得到进一步的进展,本文总结归纳了不同种类耐热型隔膜并对其性能进行了介绍,也对未来耐热型高性能隔膜的发展进行了展望。

01

耐热型隔膜性能



锂离子电池隔膜的性能对电池体系安全和电化学性能提升至关重要,应当满足以下要求:
(1)适宜的厚度与优异的尺寸稳定性,通常锂离子电池隔膜的厚度为20~25μm,隔膜厚度与尺寸稳定性密切相关,应综合考虑。
(2)孔隙率高且孔隙均一,隔膜的孔径应大于锂离子的直径,小于活性物质的直径,高孔隙率能更有效地促进隔膜对电解液的吸收与渗透,提高离子的电导率。
(3)优异的力学性能可以保证电池的安全,防止锂枝晶刺穿隔膜造成电池短路。
(4)良好的润湿性可以降低界面电阻,电解液在隔膜内的扩散时间、吸附程度或电解液与隔膜的接触角都反映了隔膜的润湿性。
(5)优异的化学稳定性,隔膜与电极材料不能发生反应,可以在电解液中稳定存在并有效地阻隔正负极,保证锂电池正常高效运行。
(6)优良的耐热与阻燃性能,锂电池在长期使用或极端温度下可能会出现热失控,优异的耐热与阻燃性能可以防止进一步恶化并起到灭火作用。

02

耐热型聚合物隔膜


目前,耐热型隔膜的聚合物包括PEEK、PET、聚酰胺、PVDF、PI等[16,26],上述材料均具备优异的力学性能、热稳定性及化学稳定性,并且都可以通过静电纺丝制备隔膜保证其高孔隙率,可作为高性能隔膜的候选材料。

2.1

PEEK隔膜



PEEK是一种耐热性和化学稳定性优异的芳香族聚合物,同时PEEK聚合物中的极性氧原子和碳氧双键与碳酸盐电解质具有很强的相互作用,可以保证隔膜具备优异的润湿性。
image.png

PEEK薄膜

Li等运用相转化法研制了一种海绵状多孔PEEK隔膜,该膜具有良好的热稳定性和高的孔隙率(78%),隔膜高孔隙率和对电解液优异的浸润性保证了隔膜高吸液率(251%),隔膜良好的浸润性有利于锂离子的传输,获得较高的离子电导率,提高锂电池的速率性能,其在5C下电池表现出优异的放电容量(124.1mAh/g)。

此外,Li等以制备的氟化PEEK为原料配置纺丝液,通过静电纺丝制备出的纳米纤维隔膜具有很高的孔隙率(88%),三氟甲基的存在增加了极性基团的占比,使隔膜表现出优异的吸液率(559%)和良好的浸润性,降低了电池的内阻,极大地提高了隔膜的离子电导率(3.12Ms/cm),并且隔膜也具备较高的力学性能(27.7MPa)与良好的热稳定性,增强了电池的安全性。

2.2

PET隔膜


PET具备良好的力学性能、优异的热稳定性以及良好的电绝缘性。在其制备的隔膜上涂覆无机纳米颗粒,可进一步增强隔膜的耐热性、浸润性等综合性能。
image.png

PET薄膜

如Xie等利用浸涂法在PET隔膜上涂覆上SiO2与Al2O3两种无机材料形成均匀的陶瓷涂层,使隔膜具备特殊的孔隙结构与较高的孔隙率,并且2种无机纳米颗粒均与电解液良好的亲和性改善了隔膜的浸润性,进而提高了隔膜的离子电导率,该隔膜在100次循环后容量保持率(93.9%)也十分优异,在10C电流下依旧保持着高容量(82.7mAh/g)。

此外,Hao等通过静电纺丝制备出的PET纳米纤维隔膜具有较高的拉伸强度(12MPa)、良好的伸长率和优异的热稳定性,以静电纺丝制备的该隔膜具备高孔隙率(89%)且具备高的吸液率(484%),可以促进锂离子高效稳定迁移,提高离子电导率,使得PET隔膜组装的电池比Celgard隔膜组装的电池具有更好的电化学稳定性和更高的放电容量,电池可以更加高效稳定地运行。

2.3

间位芳纶(PMIA)隔膜


PMIA的分子主链由芳香环和酰胺基团组成,其分子之间具有极强的氢键网络,是一种高耐热、高阻燃、高力学强度、高电绝缘性的高性能材料。PMIA隔膜多采用静电纺丝进行制备,静电纺丝法可以提高PMIA隔膜的比表面积,提高了材料的适用性,并且在纳米纤维隔膜中加入无机颗粒可以进一步增强隔膜耐热性。
image.png


间位芳纶纸

Jeon等用静电纺丝法制备出间位芳纶纳米纤维膜,再通过将Al2O3颗粒涂覆在纳米纤维膜上制得隔膜,使得隔膜具备了更加良好的热稳定性及化学稳定性,同时Al2O3具备高介电常数且与极性电解液具备良好浸润性,可以降低电荷转移电阻,提高了电池的放电容量与循环稳定性,并且在1C倍率下存在较放电容量(232mAh/g)。

此外,Xiao等也利用静电纺丝制备了PMIA及PMIA-(聚氨酯)PU纳米纤维膜,以静电纺丝制备的PMIA-PU纳米纤维膜作为隔膜有着高孔隙率,并且PMIA与PU分子结构中的羰基基团与电解液有着更高的相容性,协同使隔膜具备极高的吸液率(最大为843.52%),从而增强了隔膜的离子电导率,同时该隔膜也具备较强的力学性能与热稳定性。

2.4

聚苯撑苯并二噁唑(PBO)隔膜


PBO是一种由芳杂环与苯环组成的链状芳香族聚合物,具有优异的力学性能、热稳定性、尺寸稳定性及化学稳定性。

Lee等通过再沉积法制备出羟基共聚酰亚胺(HPI)纳米颗粒涂覆在静电纺丝制备的HPI纳米纤维膜上,再经热重排最终制得复合隔膜,探究了隔膜上颗粒形状对隔膜性能的影响,该隔膜在490℃表现出优异的热稳定性,隔膜良好的浸润性可提高离子传输效率,并且由于海鞘状结构的纳米颗粒在高温下比球状结构的纳米颗粒具有更好的电化学性能,因而TR-PBO纳米复合膜组装的电池表现出优异的高功率密度性能。

Hao等将Zylon超细纤维(PBO纤维)剥离为直径为2~10nm的PBO超细纤维,再经编织得到PBO微孔隔膜,其孔径在5~25nm之间,PBO纤维的高强度和纳米纤维之间相互作用赋予隔膜较高的力学性能(弹性模量为20GPa、极限强度为525MPa),并且隔膜在600℃以下可长期使用,能够有效改善电池的安全性能。

2.5

PVDF隔膜



PVDF等氟系聚合物因具有良好的化学、电化学稳定性,且其存在的β晶相有利于提升隔膜与电解液的亲和性,可以作为锂电隔膜的候选材料。
image.png

PVDF隔膜

Wu等通过热致相分离法(TIPS)制备了PVDF/PAN共混多孔膜,PAN通常比PVDF具有更高的韧性与强度,PAN的加入使得隔膜的热稳定性(300℃下保持稳定)与拉伸强度有大幅提升,与商用的Celgard2400隔膜相比,该隔膜组装电池后具有更高的离子传输效率以及良好的循环性能,但PAN的加入会使隔膜的孔径尺寸和孔隙率下降,从而降低隔膜的离子电导率,影响电化学性能,可根据不同的需求调整。

Widiyandari等运用静电纺丝制备了PVDF纳米纤维膜并浸渍在SiO2溶胶中制备了PVDF/SiO2复合隔膜,SiO2的加入改善了隔膜孔隙率、热稳定性、力学强度,且SiO2与电解液具有良好的亲和性,可进一步提升隔膜的浸润性,相比于纯PVDF隔膜,经过6次循环后添加SiO2的PVDF隔膜组装的电池容量得到了明显提升。

2.6

聚苯并咪唑(PBI)隔膜


PBI是一种具备优异力学性能、耐热性能的芳杂环聚合物,其在400℃以上仍能保持良好的力学性能和电性能,并且PBI分子中的极性氮原子与电解质呈正相容性,使隔膜具备更好的浸润性。
image.png

PBI

Liu等通过静电纺丝法制备了聚芳醚苯并咪唑(OPBI)纳米纤维隔膜,其表现出优异的热稳定性,其在200℃下隔膜无尺寸收缩且在550℃下开始降解,OPBI中存在丰富的氮原子和极性醚键赋予了隔膜良好的浸润性,使得锂离子更容易进行迁移,降低了电池电阻,提高了电池性能。

此外,Sun等通过湿法造孔制备了PBI微孔膜,其在300℃没有任何尺寸变化,且在空气中聚合物的骨架稳定性可以保持在545℃,在点火测试中也体现出极好的阻燃自熄性,PBI与电解液酯键之间的相互作用可以增加隔膜与电解液的相容性,从而提高隔膜的浸润性,进而能增强电池的电化学性能,电池性能测试显示在0.1C下的PBI微孔膜组装的电池放电容量高达157.1mAh/g,而在5C下的放电容量保持率为84%。PBI优异阻燃性、浸润性、耐热性都证明其可作为锂电池隔膜的候选材料。

2.7

聚苯硫醚(PPS)隔膜


PPS是一种具备超强耐热性、耐化学稳定性的特种工程塑料,其分解温度约为450℃,在200℃内可长期使用,同时其能耐绝大多数溶剂腐蚀。
image.png

PPS薄膜

为了解决PPS无纺布存在着孔径大且分布不均这一问题,Chen等将PVDF与纳米SiO2均匀涂覆于PPS无纺布表面制备成复合隔膜,涂覆物均匀地覆盖于PPS无纺布的表面后,复合隔膜形成了较为弯曲的三维多孔结构,可以促进隔膜吸收和储存较多的电解液,研究表明隔膜具有较高孔隙率(55.7%)、较高的浸润能力以及在250℃下热尺寸稳定性优异,在经过100次循环后容量保持率(66.34%)高于商业隔膜(61.03%)。

此外,Kim等通过等离子辅助机械化学(MP)处理使SiO2均匀分散在PPS基体中,再经过HF酸溶液刻蚀去除SiO2制备出PPS多孔膜,该多孔膜拥有均一的孔径、良好的孔隙结构并且其表面具备孔结构,使得制得的隔膜孔隙率高、浸润性良好、力学性能与热稳定性(250℃下无尺寸变形)优异,从而提高了隔膜的离子传输效率,具有优异力学性能和均匀孔径分布的PPS隔膜可有效抑制锂枝晶的生长。

2.8

PI隔膜


PI是一种含芳杂环的高性能聚合物,具有优异的热稳定性、化学稳定性和力学性能。PI隔膜制备方法中最为常用的为静电纺丝技术,通过静电纺丝制备出的PI纳米纤维膜具有孔隙率高、离子传输效率快等优点,同时兼具PI优异的耐热性能、力学性能以及与电解液良好的浸润性,可以改善电池的安全性、充放电速率、循环性能。
image.png

PI纳米纤维隔膜

近些年来,PI纳米纤维隔膜被国内外学者广泛报道,Shayapat等将PI的预聚体聚酰胺酸分别与SiO2和Al2O3共混作为纺丝液进行静电纺丝制备出复合纳米纤维膜,然后在350℃氮气氛围下进行热亚胺化得到隔膜,无机填料的加入以及PI自身具备的高性能使复合隔膜比商业多孔隔膜SV718均有着更高的热稳定性、力学性能、孔隙率以及浸润性。

此外,Sun等通针对PI合成、成型制备及改性等方面进行了系统研究,通过调控聚酰胺酸的黏度制备出了高强度PI纳米纤维隔膜(初始PI纤维隔膜>60MPa,改性后PI纤维隔膜>90MPa),并且PI的芳杂环结构和其结构本身的极性基团使隔膜具有良好的耐热性(491.5℃下失重5%)与浸润性(接触角为17.7°),其在10C下仍具有高容量(111.3mAh/g),该研究证实了PI纳米纤维膜可以作为一种理想的隔膜材料。

综上,聚烯烃隔膜的耐热性满足不了新一代电池的发展需求。研究表明耐热型聚合物隔膜的研究已经逐步取得突破性进展,在隔膜制备和工艺优化方面也在不断地进步,尤其PI纳米纤维隔膜在力学性能方面的研究取得了较大的突破。利用静电纺丝技术制备耐热型聚合物基纳米纤维隔膜已经成为当前的研究趋势,如何开发高性能、低成本、易制备的新型纳米纤维隔膜将成为新一代高性能隔膜的重要发展方向。

 

特别声明:本站所转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

上海联净官方微信

关注官方微信公众号

扫描关注

上海联净官方微信

随时了解最新资讯

相关产品

查看全部 >>